Bias in the estimation of the mean reversion parameter in continuous time models

نویسنده

  • Jun Yu
چکیده

It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein–Uhlenbeck process with a known long run mean when discretely sampled data are available. The first expression mimics the bias formula of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the near unit root situation and is empirically realistic for financial time series. An improvement is made in the second expression where a nonlinear correction term is included into the bias formula. It is shown that the nonlinear term is important in the near unit root situation. Simulations indicate that the second expression captures themagnitude, the curvature and the non-monotonicity of the actual bias better than the first expression. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models1

It is well known that for continuous time models with a linear drift standard estimation methods yield biased estimators for the mean reversion parameter both in …nite discrete samples and in large in-…ll samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum likelihood estimator of the mean reversion parameter in the Ornstein-Uhlenbeck process wi...

متن کامل

Bias in Estimating Multivariate and Univariate Diffusions

Multivariate continuous time models are now widely used in economics and finance. Empirical applications typically rely on some process of discretization so that the system may be estimated with discrete data. This paper introduces a framework for discretizing linear multivariate continuous time systems that includes the commonly used Euler and trapezoidal approximations as special cases and le...

متن کامل

Investigation of the Allometric Models in Estimation of Poplar (Populus deltoides) Height

One of the most important issues in forest biometrics is the use of allometric functions to estimate the tree height by using diameter-height models. Measuring the total height of trees is usually a complex and time-consuming process. In allometric functions, the diameter is measured directly but the height of the tree is an estimate of an allometric model, which will be more accurate if the cr...

متن کامل

Bias in Estimating Multivariate and Univariate Di¤usions

Multivariate continuous time models are now widely used in economics and …nance. Empirical applications typically rely on some process of discretization so that the system may be estimated with discrete data. This paper introduces a framework for discretizing linear multivariate continuous time systems that includes the commonly used Euler and trapezoidal approximations as special cases and lea...

متن کامل

Evaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)

Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012